Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Med Image Anal ; 93: 103075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38199069

RESUMO

Informative sample selection in an active learning (AL) setting helps a machine learning system attain optimum performance with minimum labeled samples, thus reducing annotation costs and boosting performance of computer-aided diagnosis systems in the presence of limited labeled data. Another effective technique to enlarge datasets in a small labeled data regime is data augmentation. An intuitive active learning approach thus consists of combining informative sample selection and data augmentation to leverage their respective advantages and improve the performance of AL systems. In this paper, we propose a novel approach called GANDALF (Graph-based TrANsformer and Data Augmentation Active Learning Framework) to combine sample selection and data augmentation in a multi-label setting. Conventional sample selection approaches in AL have mostly focused on the single-label setting where a sample has only one disease label. These approaches do not perform optimally when a sample can have multiple disease labels (e.g., in chest X-ray images). We improve upon state-of-the-art multi-label active learning techniques by representing disease labels as graph nodes and use graph attention transformers (GAT) to learn more effective inter-label relationships. We identify the most informative samples by aggregating GAT representations. Subsequently, we generate transformations of these informative samples by sampling from a learned latent space. From these generated samples, we identify informative samples via a novel multi-label informativeness score, which beyond the state of the art, ensures that (i) generated samples are not redundant with respect to the training data and (ii) make important contributions to the training stage. We apply our method to two public chest X-ray datasets, as well as breast, dermatology, retina and kidney tissue microscopy MedMNIST datasets, and report improved results over state-of-the-art multi-label AL techniques in terms of model performance, learning rates, and robustness.


Assuntos
Mama , Tórax , Humanos , Raios X , Radiografia , Diagnóstico por Computador
2.
IEEE Trans Med Imaging ; 42(3): 661-673, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36240033

RESUMO

While supervised learning techniques have demonstrated state-of-the-art performance in many medical image analysis tasks, the role of sample selection is important. Selecting the most informative samples contributes to the system attaining optimum performance with minimum labeled samples, which translates to fewer expert interventions and cost. Active Learning (AL) methods for informative sample selection are effective in boosting performance of computer aided diagnosis systems when limited labels are available. Conventional approaches to AL have mostly focused on the single label setting where a sample has only one disease label from the set of possible labels. These approaches do not perform optimally in the multi-label setting where a sample can have multiple disease labels (e.g. in chest X-ray images). In this paper we propose a novel sample selection approach based on graph analysis to identify informative samples in a multi-label setting. For every analyzed sample, each class label is denoted as a separate node of a graph. Building on findings from interpretability of deep learning models, edge interactions in this graph characterize similarity between corresponding interpretability saliency map model encodings. We explore different types of graph aggregation to identify informative samples for active learning. We apply our method to public chest X-ray and medical image datasets, and report improved results over state-of-the-art AL techniques in terms of model performance, learning rates, and robustness.


Assuntos
Diagnóstico por Computador , Tórax
3.
Bioengineering (Basel) ; 11(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38247890

RESUMO

Oropharyngeal Squamous Cell Carcinoma (OPSCC) is one of the common forms of heterogeneity in head and neck cancer. Infection with human papillomavirus (HPV) has been identified as a major risk factor for OPSCC. Therefore, differentiating the HPV-positive and negative cases in OPSCC patients is an essential diagnostic factor influencing future treatment decisions. In this study, we investigated the accuracy of a deep learning-based method for image interpretation and automatically detected the HPV status of OPSCC in routinely acquired Computed Tomography (CT) and Positron Emission Tomography (PET) images. We introduce a 3D CNN-based multi-modal feature fusion architecture for HPV status prediction in primary tumor lesions. The architecture is composed of an ensemble of CNN networks and merges image features in a softmax classification layer. The pipeline separately learns the intensity, contrast variation, shape, texture heterogeneity, and metabolic assessment from CT and PET tumor volume regions and fuses those multi-modal features for final HPV status classification. The precision, recall, and AUC scores of the proposed method are computed, and the results are compared with other existing models. The experimental results demonstrate that the multi-modal ensemble model with soft voting outperformed single-modality PET/CT, with an AUC of 0.76 and F1 score of 0.746 on publicly available TCGA and MAASTRO datasets. In the MAASTRO dataset, our model achieved an AUC score of 0.74 over primary tumor volumes of interest (VOIs). In the future, more extensive cohort validation may suffice for better diagnostic accuracy and provide preliminary assessment before the biopsy.

4.
Med Image Anal ; 81: 102551, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35932546

RESUMO

Deep learning methods provide state of the art performance for supervised learning based medical image analysis. However it is essential that trained models extract clinically relevant features for downstream tasks as, otherwise, shortcut learning and generalization issues can occur. Furthermore in the medical field, trustability and transparency of current deep learning systems is a much desired property. In this paper we propose an interpretability-guided inductive bias approach enforcing that learned features yield more distinctive and spatially consistent saliency maps for different class labels of trained models, leading to improved model performance. We achieve our objectives by incorporating a class-distinctiveness loss and a spatial-consistency regularization loss term. Experimental results for medical image classification and segmentation tasks show our proposed approach outperforms conventional methods, while yielding saliency maps in higher agreement with clinical experts. Additionally, we show how information from unlabeled images can be used to further boost performance. In summary, the proposed approach is modular, applicable to existing network architectures used for medical imaging applications, and yields improved learning rates, model robustness, and model interpretability.


Assuntos
Aprendizado Profundo , Diagnóstico por Imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos
5.
IEEE Trans Med Imaging ; 41(9): 2443-2456, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35349437

RESUMO

In many real world medical image classification settings, access to samples of all disease classes is not feasible, affecting the robustness of a system expected to have high performance in analyzing novel test data. This is a case of generalized zero shot learning (GZSL) aiming to recognize seen and unseen classes. We propose a GZSL method that uses self supervised learning (SSL) for: 1) selecting representative vectors of disease classes; and 2) synthesizing features of unseen classes. We also propose a novel approach to generate GradCAM saliency maps that highlight diseased regions with greater accuracy. We exploit information from the novel saliency maps to improve the clustering process by: 1) Enforcing the saliency maps of different classes to be different; and 2) Ensuring that clusters in the space of image and saliency features should yield class centroids having similar semantic information. This ensures the anchor vectors are representative of each class. Different from previous approaches, our proposed approach does not require class attribute vectors which are essential part of GZSL methods for natural images but are not available for medical images. Using a simple architecture the proposed method outperforms state of the art SSL based GZSL performance for natural images as well as multiple types of medical images. We also conduct many ablation studies to investigate the influence of different loss terms in our method.


Assuntos
Semântica , Humanos
6.
IEEE Trans Med Imaging ; 41(6): 1533-1546, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995185

RESUMO

Deep neural networks are known to be data-driven and label noise can have a marked impact on model performance. Recent studies have shown great robustness to classic image recognition even under a high noisy rate. In medical applications, learning from datasets with label noise is more challenging since medical imaging datasets tend to have instance-dependent noise (IDN) and suffer from high observer variability. In this paper, we systematically discuss the two common types of label noise in medical images - disagreement label noise from inconsistency expert opinions and single-target label noise from biased aggregation of individual annotations. We then propose an uncertainty estimation-based framework to handle these two label noise amid the medical image classification task. We design a dual-uncertainty estimation approach to measure the disagreement label noise and single-target label noise via improved Direct Uncertainty Prediction and Monte-Carlo-Dropout. A boosting-based curriculum training procedure is later introduced for robust learning. We demonstrate the effectiveness of our method by conducting extensive experiments on three different diseases with synthesized and real-world label noise: skin lesions, prostate cancer, and retinal diseases. We also release a large re-engineered database that consists of annotations from more than ten ophthalmologists with an unbiased golden standard dataset for evaluation and benchmarking. The dataset is available at https://mmai.group/peoples/julie/.


Assuntos
Diagnóstico por Imagem , Redes Neurais de Computação , Ruído , Radiografia , Incerteza
7.
IEEE Trans Med Imaging ; 40(12): 3413-3423, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34086562

RESUMO

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels. The dataset has over 46,000 nuclei from 37 hospitals, 71 patients, four organs, and four nucleus types. We also organized a challenge around this dataset as a satellite event at the International Symposium on Biomedical Imaging (ISBI) in April 2020. The challenge saw a wide participation from across the world, and the top methods were able to match inter-human concordance for the challenge metric. In this paper, we summarize the dataset and the key findings of the challenge, including the commonalities and differences between the methods developed by various participants. We have released the MoNuSAC2020 dataset to the public.


Assuntos
Algoritmos , Núcleo Celular , Humanos , Processamento de Imagem Assistida por Computador
8.
IEEE Trans Med Imaging ; 40(10): 2548-2562, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33625979

RESUMO

In supervised learning for medical image analysis, sample selection methodologies are fundamental to attain optimum system performance promptly and with minimal expert interactions (e.g. label querying in an active learning setup). In this article we propose a novel sample selection methodology based on deep features leveraging information contained in interpretability saliency maps. In the absence of ground truth labels for informative samples, we use a novel self supervised learning based approach for training a classifier that learns to identify the most informative sample in a given batch of images. We demonstrate the benefits of the proposed approach, termed Interpretability-Driven Sample Selection (IDEAL), in an active learning setup aimed at lung disease classification and histopathology image segmentation. We analyze three different approaches to determine sample informativeness from interpretability saliency maps: (i) an observational model stemming from findings on previous uncertainty-based sample selection approaches, (ii) a radiomics-based model, and (iii) a novel data-driven self-supervised approach. We compare IDEAL to other baselines using the publicly available NIH chest X-ray dataset for lung disease classification, and a public histopathology segmentation dataset (GLaS), demonstrating the potential of using interpretability information for sample selection in active learning systems. Results show our proposed self supervised approach outperforms other approaches in selecting informative samples leading to state of the art performance with fewer samples.


Assuntos
Pulmão , Aprendizado de Máquina Supervisionado , Incerteza
9.
IEEE J Biomed Health Inform ; 25(10): 3709-3720, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33465032

RESUMO

The need for comprehensive and automated screening methods for retinal image classification has long been recognized. Well-qualified doctors annotated images are very expensive and only a limited amount of data is available for various retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Some studies show that some retinal diseases such as DR and AMD share some common features like haemorrhages and exudation but most classification algorithms only train those disease models independently when the only single label for one image is available. Inspired by multi-task learning where additional monitoring signals from various sources is beneficial to train a robust model. We propose a method called synergic adversarial label learning (SALL) which leverages relevant retinal disease labels in both semantic and feature space as additional signals and train the model in a collaborative manner using knowledge distillation. Our experiments on DR and AMD fundus image classification task demonstrate that the proposed method can significantly improve the accuracy of the model for grading diseases by 5.91% and 3.69% respectively. In addition, we conduct additional experiments to show the effectiveness of SALL from the aspects of reliability and interpretability in the context of medical imaging application.


Assuntos
Retinopatia Diabética , Doenças Retinianas , Algoritmos , Retinopatia Diabética/diagnóstico por imagem , Fundo de Olho , Humanos , Reprodutibilidade dos Testes
11.
Comput Med Imaging Graph ; 71: 30-39, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472408

RESUMO

Anatomical landmark segmentation and pathology localisation are important steps in automated analysis of medical images. They are particularly challenging when the anatomy or pathology is small, as in retinal images (e.g. vasculature branches or microaneurysm lesions) and cardiac MRI, or when the image is of low quality due to device acquisition parameters as in magnetic resonance (MR) scanners. We propose an image super-resolution method using progressive generative adversarial networks (P-GANs) that can take as input a low-resolution image and generate a high resolution image of desired scaling factor. The super resolved images can be used for more accurate detection of landmarks and pathologies. Our primary contribution is in proposing a multi-stage model where the output image quality of one stage is progressively improved in the next stage by using a triplet loss function. The triplet loss enables stepwise image quality improvement by using the output of the previous stage as the baseline. This facilitates generation of super resolved images of high scaling factor while maintaining good image quality. Experimental results for image super-resolution show that our proposed multi stage P-GAN outperforms competing methods and baseline GANs. The super resolved images when used for landmark and pathology detection result in accuracy levels close to those obtained when using the original high resolution images. We also demonstrate our methods effectiveness on magnetic resonance (MR) images, thus establishing its broader applicability.


Assuntos
Algoritmos , Ventrículos do Coração/diagnóstico por imagem , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Vasos Retinianos/diagnóstico por imagem , Pontos de Referência Anatômicos , Fundo de Olho , Humanos
12.
Comput Med Imaging Graph ; 55: 28-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27590198

RESUMO

We present a novel method to segment retinal images using ensemble learning based convolutional neural network (CNN) architectures. An entropy sampling technique is used to select informative points thus reducing computational complexity while performing superior to uniform sampling. The sampled points are used to design a novel learning framework for convolutional filters based on boosting. Filters are learned in several layers with the output of previous layers serving as the input to the next layer. A softmax logistic classifier is subsequently trained on the output of all learned filters and applied on test images. The output of the classifier is subject to an unsupervised graph cut algorithm followed by a convex hull transformation to obtain the final segmentation. Our proposed algorithm for optic cup and disc segmentation outperforms existing methods on the public DRISHTI-GS data set on several metrics.


Assuntos
Entropia , Glaucoma/diagnóstico por imagem , Disco Óptico/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Aprendizado de Máquina não Supervisionado , Humanos , Modelos Logísticos , Redes Neurais de Computação
14.
Comput Methods Programs Biomed ; 128: 75-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27040833

RESUMO

This paper proposes a novel active learning (AL) framework, and combines it with semi supervised learning (SSL) for segmenting Crohns disease (CD) tissues from abdominal magnetic resonance (MR) images. Robust fully supervised learning (FSL) based classifiers require lots of labeled data of different disease severities. Obtaining such data is time consuming and requires considerable expertise. SSL methods use a few labeled samples, and leverage the information from many unlabeled samples to train an accurate classifier. AL queries labels of most informative samples and maximizes gain from the labeling effort. Our primary contribution is in designing a query strategy that combines novel context information with classification uncertainty and feature similarity. Combining SSL and AL gives a robust segmentation method that: (1) optimally uses few labeled samples and many unlabeled samples; and (2) requires lower training time. Experimental results show our method achieves higher segmentation accuracy than FSL methods with fewer samples and reduced training effort.


Assuntos
Abdome/diagnóstico por imagem , Doença de Crohn/diagnóstico por imagem , Diagnóstico por Computador/métodos , Imageamento por Ressonância Magnética , Aprendizagem Baseada em Problemas/métodos , Algoritmos , Entropia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Modelos Estatísticos , Reprodutibilidade dos Testes , Software
15.
J Med Imaging (Bellingham) ; 3(1): 014003, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26958579

RESUMO

We propose an active learning (AL) approach for prostate segmentation from magnetic resonance images. Our label query strategy is inspired from the principles of visual saliency that have similar considerations for choosing the most salient region. These similarities are encoded in a graph using classification maps and low-level features. Random walks are used to identify the most informative node, which is equivalent to the label query sample in AL. To reduce computation time, a volume of interest (VOI) is identified and all subsequent analysis, such as probability map generation using semisupervised random forest classifiers and label query, is restricted to this VOI. The negative log-likelihood of the probability maps serves as the penalty cost in a second-order Markov random field cost function, which is optimized using graph cuts for prostate segmentation. Experimental results on the Medical Image Computing and Computer Assisted Intervention (MICCAI) 2012 prostate segmentation challenge show the superior performance of our approach to conventional methods using fully supervised learning.

16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 3260-3264, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269003

RESUMO

Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image. First, we roughly segment optic disc using circular hough transform. The approximated optic disc is then used to compute the initial optic disc and cup shapes. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape of the optic cup and disc from a given initial shape. Gradient boosted regression trees are employed to learn each regressor in the cascade. A novel data augmentation approach is proposed to improve the regressors performance by generating synthetic training data. The proposed optic cup and disc segmentation method is applied on an image set of 50 patients and demonstrate high segmentation accuracy for optic cup and disc with dice metric of 0.95 and 0.85 respectively. Comparative study shows that our proposed method outperforms state of the art optic cup and disc segmentation methods.


Assuntos
Fundo de Olho , Processamento de Imagem Assistida por Computador , Disco Óptico/anatomia & histologia , Algoritmos , Glaucoma/diagnóstico , Humanos , Análise de Regressão
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1304-1307, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268565

RESUMO

Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making. Experimental results demonstrate the superior performance of our proposed algorithm over competing methods.


Assuntos
Retina , Algoritmos , Humanos , Redes Neurais de Computação , Neurobiologia
18.
IEEE Trans Med Imaging ; 35(1): 63-75, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26186771

RESUMO

Registration of images in the presence of intra-image signal fluctuations is a challenging task. The definition of an appropriate objective function measuring the similarity between the images is crucial for accurate registration. This paper introduces an objective function that embeds local phase features derived from the monogenic signal in the modality independent neighborhood descriptor (MIND). The image similarity relies on the autocorrelation of local structure (ALOST) which has two important properties: 1) low sensitivity to space-variant intensity distortions (e.g., differences in contrast enhancement in MRI); 2) high distinctiveness for 'salient' image features such as edges. The ALOST method is quantitatively compared to the MIND approach based on three different datasets: thoracic CT images, synthetic and real abdominal MR images. The proposed method outperformed the NMI and MIND similarity measures on these three datasets. The registration of dynamic contrast enhanced and post-contrast MR images of patients with Crohn's disease led to relative contrast enhancement measures with the highest correlation (r=0.56) to the Crohn's disease endoscopic index of severity.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Doença de Crohn/patologia , Humanos , Imageamento por Ressonância Magnética , Radiografia Abdominal , Tomografia Computadorizada por Raios X
19.
J Digit Imaging ; 27(6): 794-804, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24895064

RESUMO

We propose a fully automated method for segmenting the cardiac right ventricle (RV) from magnetic resonance (MR) images. Given a MR test image, it is first oversegmented into superpixels and each superpixel is analyzed to detect the presence of RV regions using random forest (RF) classifiers. The superpixels containing RV regions constitute the region of interest (ROI) which is used to segment the actual RV. Probability maps are generated for each ROI pixel using a second set of RF classifiers which give the probabilities of each pixel belonging to RV or background. The negative log-likelihood of these maps are used as penalty costs in a graph cut segmentation framework. Low-level features like intensity statistics, texture anisotropy and curvature asymmetry, and high level context features are used at different stages. Smoothness constraints are imposed based on semantic information (importance of each feature to the classification task) derived from the second set of learned RF classifiers. Experimental results show that compared to conventional method our algorithm achieves superior performance due to the inclusion of semantic knowledge and context information.


Assuntos
Ventrículos do Coração/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Árvores de Decisões , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Semântica
20.
IEEE Trans Image Process ; 23(4): 1504-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24569439

RESUMO

Labeled training data are used for challenging medical image segmentation problems to learn different characteristics of the relevant domain. In this paper, we examine random forest (RF) classifiers, their learned knowledge during training and ways to exploit it for improved image segmentation. Apart from learning discriminative features, RFs also quantify their importance in classification. Feature importance is used to design a feature selection strategy critical for high segmentation and classification accuracy, and also to design a smoothness cost in a second-order MRF framework for graph cut segmentation. The cost function combines the contribution of different image features like intensity, texture, and curvature information. Experimental results on medical images show that this strategy leads to better segmentation accuracy than conventional graph cut algorithms that use only intensity information in the smoothness cost.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Algoritmos , Árvores de Decisões , Humanos , Imageamento por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...